Monotone interaction of walk and graph: recurrence versus transience*

نویسندگان

  • Amir Dembo
  • Ruojun Huang
  • Vladas Sidoravicius
چکیده

We consider recurrence versus transience for models of random walks on growing in time, connected subsets Gt of some fixed locally finite, connected graph, in which monotone interaction enforces such growth as a result of visits by the walk (or probes it sent), to the neighborhood of the boundary of Gt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Walking within growing domains: recurrence versus transience*

For normally reflected Brownian motion and for simple random walk on independently growing in time d-dimensional domains, d ≥ 3, we establish a sharp criterion for recurrence versus transience in terms of the growth rate.

متن کامل

Recurrent Rotor-Router Configurations

We prove the existence of recurrent initial configurations for the rotor walk on many graphs, including Zd, and planar graphs with locally finite embeddings. We also prove that recurrence and transience of rotor walks are invariant under changes in the starting vertex and finite changes in the initial configuration.

متن کامل

Branching random walks in random environment on Cayley graphs

We review some recent results concerning recurrence and transience for branching random walks in random environment on ddimensional lattices and on trees. We obtain some generalizations of these results for the case when the branching random walk in random environment takes place on arbitrary infinite connected Cayley graph.

متن کامل

Recurrence and transience of a multi-excited random walk on a regular tree

We study a model of multi-excited random walk on a regular tree which generalizes the models of the once excited random walk and the digging random walk introduced by Volkov (2003). We show the existence of a phase transition and provide a criterion for the recurrence/transience property of the walk. In particular, we prove that the asymptotic behaviour of the walk depends on the order of the e...

متن کامل

Recurrence Theorems in Various Types of Random Walk

In 1921 George Polya famously resolved the question of recurrence versus transience of the simple random walk on integer lattices. In this talk we will study the analogous question for random basic walks, which are random processes related to the problem of graph exploration by a mobile entity. After discussing recurrence results on other generalizations of simple random walks, we’ll resolve th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014